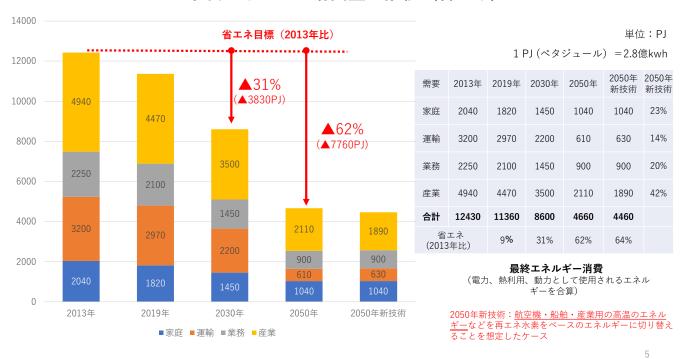


エネルギー転換戦略

- データ編 -

2021年6月10日 環境エネルギー調査会



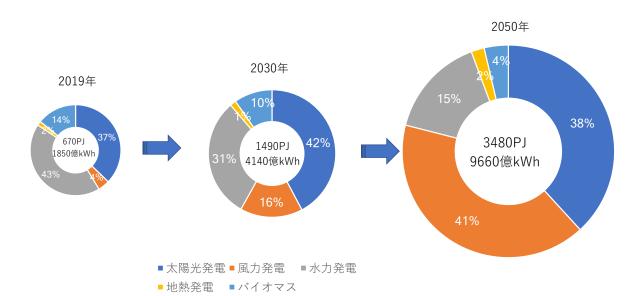
立憲民主党のエネルギー政策(綱領および基本政策)

地域ごとの特性を生かした再生可能エネルギーを基本とする分散型エネルギー社会を構築し、あらゆる政策資源を投入して、原子力エネルギーに依存しない原発ゼロ社会を一日も早く実現します。 綱領 2-(ウ)より抜粋

- <mark>再生可能エネルギー</mark>によるエネルギーの地産地消や、<mark>省エネルギー、</mark>蓄電技術の向上 などで、地域の活性化と雇用創出をはかります。
- 原子力発電所の新設・増設は行わず、<mark>すべての原子力発電所の速やかな停止と廃炉決定</mark>をめざします。
- 核燃料サイクル事業の中止に向け、関係自治体との協議による新たな枠組みを構築し、 使用済み核燃料は直接処分を行います。最終処分は、国の責任を明確にし、安全を最 優先に科学的な知見に基づいて進めます。
- エネルギー転換を達成するための人材の確保と育成に努めるとともに、労働者の雇用 の公正な移行と影響を受ける地域の振興に、最大限取り組みます。
- 東京電力福島第一原子力発電所事故の検証や、実効性のある避難計画の策定、地元合 意がないままの<mark>原子力発電所の再稼働</mark>は認めません。

最終エネルギー消費量の推移(省エネ)

エネルギー供給の推移


四捨五入の関係で合計が合わないところあり

電力構成詳細

			2019年		2030年			2050年			
			設備容量 万kW	発電量 億kWh	PJ	設備容量 万kW	発電量 億kWh	PJ	設備容量 万kW	発電量 億kWh	PJ
再生可能エネルギー		合計	8,903	1,853	667	20,981	4,144	1,492	47,223	9,663	3,479
		小計	5,691	690	248	14,700	1,750	630	30,000	3,690	1,328
	太陽光発電	屋根置き太陽光発電	1,175	142	51	3,000	315	114	9,600	1,009	363
	人陽兀光电	ソーラーシェアリング				5,000	613	221	13700	1,800	648
		事業用ソーラー	4,516	548	197	6,700	822	296	6,700	880	317
	風力発電	小計	435	77	28	2,704	658	237	13,000	3,942	1,419
		陸上風力発電	435	77	28	2,128	466	168	4,000	946	341
		洋上風力発電	0.4	0	0	576	192	69	9,000	2,996	1,079
	水力発電	小計	2,288	796	287	2,726	1,268	457	3,135	1,483	534
		大規模水力発電	1,251	435	157	1,251	493	178	1,251	493	178
		小水力発電	1,037	361	130	1,475	775	279	1,884	990	356
	地熱発電	小計	54	28	10	123	64	23	350	193	69
		大型地熱	51	26	9	98.5	52	19	250	131	47
		小型バイナリ	3	2	1	24	13	5	100	61	22
		小計	435	262	94	728	403	145	738	355	128
	バイオマス発		351	231	83	588	361	130	596	313	113
	電	メタン発酵	6	4	1	16	10	4	18	9	3
		(廃棄物)	78	27	10	124	33	12	124	33	12
		小計									
	その他	海流発電・潮流発電									
		グリーン水素など									
原発・火力		合計	20,184	8,395	3,022	7,896	4,135	1,489	499	306	110
	原子力		3,308	638	230					0	0
	LNG		8,236	3,803	1,369	7,338	3,793	1,365		0	0
	石油		3,804	292	105					0	0
	石炭		4,836	3,262	1,174					0	0
	排熱など			400	144	558	342	123	499	306	110
発電 総合計			29,087	10,248	3,690	28,877	8,279	2,980	47,722	9,969	3,589

^{・2030}年の再生可能エネルギー比率:50%

再生可能エネルギー電気導入の姿

当初シナリオからの変更点 ・太陽光発電の設置の加速化 屋根置き:当初2000→3000 ソーラーシェアリング:当初1300→5000(3.5%) ・風力発電の導入減 陸上:当初より20%減 洋上:当初より40%減

エネルギー起源CO₂排出量

2030年 58%削減 (2013年比)

2050年 96%削減 (既存技術)

新技術を導入して100%削減

政府想定(地球温暖化対策計画) 2030年度に温室効果ガス26→46%(2013年比)

*エネルギー転換とは1次エネルギーから2次エネルギー(発電等)への転換のための排出

*非エネルギー起源 CO_2 、 CO_2 以外の温室効果ガス(フロン、メタン等)については別途対策が必要

27

電力需給安定性

- 2030年のエネルギーミックス(再エネ50%、LNG火力他50%)をベースに電力の供給安定性を検証する
- ・ 東日本3電力、西日本6電力をそれぞれ一体として電力の融通を行う
- 電力会社間の系統の増強については既計画分、および計画に含まれていない北本連係線および 関門連係線を現在の二倍に増強することを想定

(北本連系線 90万kW→180万kW 関門連系線 278万kW→556万kW、運用容量)

- 揚水発電については既存設備を最大限活用する
- 過去4年間(2016~19年)の電力需給の実データを元に、全期間、全地域について電力の供給不足が発生しないか検証した

【結果】需要バランス分析の結果、太陽光発電量や風力発電量が小さい夏の夕方、冬の夕方など の厳しい条件下でも、十分に余裕を持って電力供給が可能であることを確認した

※ 沖縄について:沖縄本島は、再工ネを特に優遇し、電気自動車やバッテリーも優遇・導入し、デマンドレスポンスも積極導入、2030年脱石炭を目指す。2050年までにLNG火力もゼロをめざします。離島は再工ネは特に優遇。宮古島のような再工ネ導入拠点をつくり、電気自動車やバッテリーも導入し、2050年を待たずにディーゼル火力ゼロを目指す。(別途計画を策定)

再エネの発電コスト単価

再エネ導入拡大で低下

種類		2018年 [円/kWh]	2030年 [円/kWh]	考え方	
+991/	屋根置き	19	10	再工ネの2018年単価は、調達価格	
太陽光	事業系	16	10	算定委員会報告、IEA報告、IRENA 報告、総合資源エネルギー調査会コ	
風力	陸上	20	10	スト検証WGレビューシートより試算など。2030年単価は、2018年	
	洋上	36	14	の国際価格に収斂と想定	
	大規模			大規模はそのまま。小水力は調達価 格委想定値まで値下がり	
水力	小規模	7~20	7~20		
地熱		7~20	7~13	大型地熱はそのまま	
バイオマス		22	22	そのまま	

注:いずれも当該年に導入した場合の単価

発電コスト総額と発電コスト単価

- エネルギー転換戦略により、発電コスト総額は大きく減少。2030年以降は 発電コスト単価も減少
- 政策により地域内に支払う分が拡大、地域外流出減少

年	発電コスト総額[兆円]				
	シナリオ				
	エネルギー転換 戦略	政府エネルギー・ミックス(原発維持)			
2018	16	16			
2030	11	15			
2040	10	14			
2050	9	14			

年	発電コスト単価[円/kWh]					
	シナリオ					
	エネルギー転換 戦略	政府エネルギー・ミックス(原発維持)				
2018	16	16				
2030	14	14				
2040	12	14				
2050	10	14				

2030年にエネルギー転換シナリオ、政府の2030年エネルギーミックス、省エネ再エネ対策をしない「火力依存」と比較。再エネ単価のうち太陽光と風力は、2030年に2018年の国際価格に収斂すると想定。火力発電燃料はEA(国際エネルギー機関)の世界エネルギー見通し2019年版の日本の輸入価格の将来見通しより

経済効果

- 1. 投資額:2030年までに累積約202兆円(民間約151兆円、 公的資金約51兆円)、2050年までに累積約340兆円
- 2. 光熱費削減額:2030年までに累積約358兆円(2050年までに累積約500兆円)
- 3. 雇用創出数:2030 年までに約2544万人年(年間約254万人の雇用が10年間維持)
- 4. 経済波及効果:2030年までに489兆円(年間48.9兆円)

光熱費削減額は、2030年のBAUケース(政府エネルギー長期需給見通しにあるBAU想定)の光熱費から転換戦略を実施した対策ケースでの光熱費を差し引いたもの。投資額から、雇用創出数および経済波及効果を、産業連関表から計算している(直接効果+第1次間接波及効果を考慮)。

雇用の喪失に当たる効果について別途試算する